
EmoSTL: Formal Spatial-Temporal Verification of
Emotion Specifications in Computer Games

Saba Gholizadeh Ansari∗, I. S. W. B. Prasetya∗, Mehdi Dastani∗, Frank Dignum†, and Gabriele Keller∗
∗Utrecht University, Utrecht, The Netherlands, {s.gholizadehansari, s.w.b.prasetya, m.m.dastani, g.k.keller}@uu.nl

†Umeå University, Umeå, Sweden, frank.dignum@umu.se

Abstract—As the game industry continues to evolve in pop-
ularity, testing the experience of players becomes crucial for
attracting and retaining players in the highly competitive market.
However, the absence of automated methods for articulating and
verifying player experience (PX) specifications led us to introduce
EmoSTL, a specialized language that extends Linear Temporal
Logic with spatial and time-interval expressions, enabling the
capture of complex temporal and spatial aspects of players’
emotions and their experiences within games. We conducted a
user study to collect suggestive PX requirements for a game under
test to assess the capabilities of EmoSTL. Findings reveal that
the language formalizes 92 percent of the set PX requirements,
and with runtime verification, several PX design issues are iden-
tified in the game. Moreoever, EmoSTL performance evaluation
demonstrates its linear execution time, showcasing the language
potential usage in automated PX testing of games.

Index Terms—formal verification, player experience testing,
emotional experience, playtesting
Note: This is a preprint of a paper with the same title, accepted
in the Proceedings of the 17th IEEE International Conference
on Software Testing, Verification and Validation (ICST), 2024.

I. INTRODUCTION

Game User Research (GUR) [1] is a rapidly growing
phenomenon that focuses on understanding the experience of
players and their interaction with games. Such knowledge
plays an essential role in the acquisition and retention of
players in the competitive environment of the game industry.
GUR involves analysis of psychology and human factors such
as emotions that regulate the general experience of players [2].
This ultimately helps game designers to create engaging and
immersive experiences. While maintaining positive emotions
is connected to factors such as enjoyment and fun [3], [4],
negatively valenced emotions contribute to engaging player
experiences (PX) and facilitate player involvement [5], [6].

Turning this into a testing problem with verifiable emotion
specifications would provide assistance in the automated qual-
ity control process by identifying PX-related flaws of the game
design such as repetitive game-play, and eventually improving
the overall game experience. The potential application of play-
ers’ emotions verification during the game-play extends into
broader domains such as a better human-computer interaction
design [2] and game AIs development which let the AIs adapt
and respond more naturally and believably to human players.

Formal verification [7] is a correctness technique that uses
a mathematical interpretation to define and check properties,
making it more precise and robust than non-formal techniques.

Moreover, using formulas, rather than concrete values, allows
us to formulate the specifications generally and consistently.
Linear temporal logic (LTL) is a formalism technique that is
introduced for specifying properties of systems that evolve
over time [8], [9]. The language is applicable to design-
time and run-time verification. While the former employs
model-checking, the latter checks whether the system’s current
actions are aligned with the desired behavior [10]. Design-
time verification techniques such as model-checking enable
errors to be detected at an early development stage. However,
obtaining reasonable models for real-life systems is often not
feasible. On the other hand, run-time verification allows the
detection of inconsistencies in the system’s actual execution
that may remain undetected by model-based verification [11].
The use of formal verification has become pervasive for assess-
ing the conformance of software systems to their specification.
However, the dominant focus of this methodology is on the
functional correctness rather than utilizing a formal approach
to verify the desired user experience, whereas for systems such
as computer games the latter is just as important. In particular,
testing gameplay is more than verifying the functional aspects
of games; it is also about the evaluation of PX to help game
developers address PX-issues during development and reduce
the likelihood of costly and time-consuming post-deployment
fixes [12]–[14] to deliver a well-received product.

Contribution I. This paper proposes a Domain Specific
Language (DSL) named EmoSTL based on a subset of LTL
and extended with spatial and time-interval expressions to
express PX specifications of computer games with a semantic
that allows run-time verification of specifications written in
this DSL. In some aspects, the language offers more expres-
siveness than LTL, as it captures complex temporal and spatial
properties of emotions, as well as aggregates of such properties
over time or over a specific time interval. Furthermore, the
language provides the capability for spatial verification, which
targets a specific logic in a defined region, allowing verification
of properties such as the coverage ratio of a certain emotion
in a given area. Given the challenge of understanding LTL
formulas, we strive to propose a more intuitive language
for game designers. The proposed language would enable
game developers to perform automated testing of emotion
specifications.

Contribution II. Moreover, we conduct a user study to
gather PX requirements designed by software engineers for

Fig. 1: ’Castle Zenopus’ level in Dungeons & Dragons [15].

a game under test. We explore how our approach formulates
such requirements into formal specifications and verifies them.
Additionally, we evaluate the performance of EmoSTL.

The paper is organized as follows. Section II provides
motivating examples. Section III and IV introduce EmoSTL
and its formal semantics. Section V explains the user study
and the application of EmoSTL in a case study alongside
a performance evaluation. Section VI discusses related work.
Section VII concludes the paper and outlines future work.

II. A MOTIVATING EXAMPLE

This section shows several examples of envisaged use of
our proposed language for defining PX specifications to aid
PX testing. To present these examples, a few notations are
explained here informally to provide some insights. The lan-
guage syntax, however, is given in Section III. Figure 1 shows
a running example of a level in Dungeons & Dragons Online
named Castle Zenopus. The castle consists of rooms and
corridors filled with traps and monsters. There are also levers
to unlock doors, and shrines to heal the player. The player’s
goal is to explore the castle and defeat the boss monster in
room F2 [15]. Imagine a setup where some players play the
level, and data are collected, capturing the game behavior
and the players’ emotions during playing. Alternatively, an
emotional AI agent can play the level and report emotions it
feels over time [16]. Assume that S consists of the traces of
emotional experience and ϕ expresses a property over traces.
We write S valid ϕ to check if ϕ is satisfied by all traces in
S and S sat ϕ to check if at least one trace satisfies ϕ. Such
specifications in our language, are exemplified as follows:

Example-1 Every player would always feel a sense of hope
during playing the designed level:

S valid always (h > 0) (1)

where h denotes the player’s intensity (strength) of hope.
Example-2 When a player passes the corridor containing

traps (cortrap), they would feel distressed at least once:

S valid (seq [cortrap] → seq [cortrap.D
′]) (2)

where D′ denotes a rise in the intensity of distress.
Example-3 There is at least one trace in which the player

experienced a rise in fear in 20% of the area of room N.

S sat covered (N.F′, 20%) (3)

where F′ denotes the presence of a rise in the intensity of fear.
Example-4 Here, we would like to check the effect of

monsters and a boss in rooms A and N on players’ emotional
experience during a specific time interval. The specification
below searches for a trace in which the player initially
experiences a rise in fear when passing room A and never
experiences fear afterward until it reaches N where the player
becomes distressed before experiencing a rise in hope within
20 time units:

S sat seq[1,20] [A.F′; absence F′;N.D′;N.H′] (4)

where F′, D′ and H′ denote the presence of an increase in
the player’s fear, distress, and hope.

III. EmoSTL: THE LANGUAGE SYNTAX

The proposed language is based on finite-trace LTL [17],
extended to incorporate time intervals and spatial expressions,
and interpreted over enriched states that are assumed to carry
emotion-related information. It is also more restrictive than
LTL, as it does not permit arbitrary nesting of temporal oper-
ators. For convenience, we call the language EmoSTL: Spatial
Temporal Language of Emotions. This section introduces the
syntax. Section IV gives the formal semantics.

A. Rich State Formula

The basic building blocks of every specification are state
formulas that are evaluated at a particular state in a given
emotion trace. An ’emotion trace’ is a finite sequence of states
that records the player’s emotions along with relevant state
variables as the player plays a game, assuming these traces are
available. Section V discusses options to obtain these traces.

A state formula might specify a particular variable should
have a certain value or bound, e.g. h>0. Some variables have
specific PX-related meaning, e.g. h represents the player’s
hope intensity, as recorded in the emotion trace. Formulas can
also express spatial properties, differential properties towards

2

the previous state, and aggregation over an entire trace. The
precise syntax of rich state formulas is given below:

P ::= ¬P | P1 ∧ P2

| A.P | covered (A.P , constant)
| variable rel constant

rel ::= = | ≠ | ≤ | < | > | ≥
variable ::= ordinary-variable

| px -variable
| primed -variable

(5)

• Negation and conjunction have the usual meaning.
• A is a spatial expression that describes an area, such as a

room. The syntax for A is shown in Eq.(7). A.P describes
a state where the player is in A and the formula P holds.
We allow simply A to be treated as a state formula, as
an abbreviation of A.true.

• covered (A. P , constant) expresses the proportion of
geospatial points (constant value) within areas A where
P is present (further in Def. 2).

• variables: There are several types of variables. An
ordinary-variable refers to the corresponding part of
a state in the trace, e.g. the player’s health point (hp).
Ordinary variables include time and location that corre-
spond to the time when the current state is sampled, and
the player position in that state.
There are also px-variables, e.g. h, which we use to
refer to the intensity of the emotion hope recorded in the
trace. Examples of px-variables are as listed below:

px -variable ::= h | j | s | f | d | p

representing hope, joy, satisfaction, fear, distress, and dis-
appointment. Here, the choice of these variables is based
on the well-known psychological structure of emotions
presented by Ortony, Clore & Collins [18] as the OCC
structure. However, any emotion type can be utilized as
px-variables as long as the traces expose their values.
For every variable, e.g. h, a primed-version h′ refers to
the difference between its values in the current and the
previous state in the trace. Thus, an emotion rise can
be expressed a positive primed value. Notice that these
rich state formulas are actually trace formulas referring
to two states. The degree of the rise is expressed with a
certain threshold c. The following derived notations are
introduced for the aforementioned examples:

H′
c = h′ > c , J′

c = j′ > c , F′
c = f ′ > c

D′
c = d′ > c ,S′

c = s′ > c ,P′
c = p′ > c

(6)

When c is 0, it is removed from the notation; e.g. H′
0

becomes H′.
Spatial Expression: An area can represent a room, a

corridor, or any fine-grained area as small as a 1× 1 square.
An essential property of the expression is to check whether
a location is inside an area, denoted as ℓ ∈ A, where ℓ is a
location and A is an area. A is defined as follows:

A ::= circle | rectangle | Ai ∪Aj | Ai ∩Aj | A (7)

where Ai and Aj represent two distinct area. Area A can be
defined as, e.g. a rectangle described by the bottom left vertex
and the top right vertex of the rectangle as (xi, yi) , (xj , yj).

B. Temporal Expression

A temporal formula is used to express a property over an
emotion trace, as opposed to state formulas, which express
a property on a single state. While LTL can be used to
express such a formula, LTL is notoriously hard to understand
[9]. Requiring game designers to write plain LTL formulas
appears unproductive and error-prone. We, therefore, propose
an alternative language, which in the temporal aspect is more
restricted than LTL, but makes use of the richer state formula
as defined in the section III-A. The language of temporal
formulas is defined recursively as follows; below, ϕ and ψ
are temporal formulas, and P is a state formula.

ϕ ::= P | ¬ϕ | and(ϕ, ψ)
| always(ϕ)
| seq [e1 ; ... ; en]

ei ::= P | P I | absence P

(8)

• and(ϕ, ψ) and always(ϕ) denote conjunction and the tem-
poral ’always’ property [19], with their usual meaning.

• seq [e1 ; ... ; en] expresses the order of states,
satisfying the specified ’elements’. An element e can
be either a formula P with an optional time interval
I or an absence element, expressing the absence of a
certain state (rather than its occurrence). For example,
seq [P ; absence P ; Q] means P should eventually occur,
and then it should be absent until Q occurs.

• I is a time interval, either relative or absolute. A relative
I is denoted by a pair of lower and upper time-bounds
∼[a, b] (or with variations such as [a, b) and [a..]),
intended to put a constraint on when a certain thing
should happen. An absolute interval is denoted by [a, b].

For convenience, we also introduce some derived operators:

• seqI [e1; ...; en] is a time-interval variation of seq which
requires that e1; ...; en should happen within the given
time interval. The definition is given later in Section IV-B.

• sustain P = absence ¬P , to express that we want to
sustain a state rather than just having it occurring once.

• or(ϕ, ψ) and ϕ→ ψ with the usual meaning.

IV. THE LANGUAGE SEMANTICS

A. State Formula Semantics

To define the semantics of the introduced state formulas,
we first need to define state and trace of a game under test.

• A state σi is a vector of values such that σi.v denotes
the value of the variable v in the state σi.

• A game trace is σ = σ0, σ1, ..., σn−1 is a finite, non-
empty sequence of states that corresponds to a finite game
execution of a player. Traces are assumed to be maximal,
i.e. they end with the completion of a quest, or a defeat.

3

Definition 1. The semantics of state formulas in Eq.(5) is
defined as follows, where v is a variable and c is constant:

J¬P K σi = not JP K σi
J P1 ∧ P2K σi = JP1K σi ∧ JP2K σi
JvK σi = σi.v (the value of v in the state σi)
Jv rel cK σi = JvK σi rel c
Jv′K σi = σi.v − σi−1.v, if i > 0 else undefined

where rel is one of = | ≠ | ≤ | < | > | ≥ .

Definition 2. The semantic of spatial formula A.P :

JA.P K σi = JP K σi ∧ σi.location ∈ A

Imagine the level is divided into small unit squares of u×u.
Given a location l, extra(l) denotes the unique square in the
level such that l is in the square, so spatial-coverage is:

Jcovered (A.P, c)K σi =

| {extra(σk.location) | 0≤k≤i ∧ JA.P K σk } |
| {extra(ℓ) | ℓ∈A} | ≥ c

covered (A.P, c) asserts that the proportion of unit squares
in A where P is true, compared to the total number of unit
squares in A is at least c. E.g. covered (A.(h>0), 0.8) means
the presence of hope being witnessed in 80% of the area A.

B. Base Temporal Language Semantics

EmoSTL can be translated into LTL. To facilitate transla-
tion, we offer an overview of classic LTL and time-bounded
LTL, followed by defining mappings between the constructs
in our language and the corresponding LTL formulae.

1) Classic LTL: LTL is a modal logic that incorporates
temporal operators, relating events happening at different
times over a linear timeline [8]. LTL formulas are generally
interpreted over infinite traces. However, some applications
[20]–[22] employ offline verification, which involves using a
variant of LTL synthesis named LTLf where specifications
are interpreted over finite traces [19], [23]. Let σ be a trace of
length n>0. Then, ϕ holds on σ is defined as σ[0..n) |=f ϕ
which means the satisfaction of ϕ on the trace segment σ[0..n)
can be either true or false. The LTLf semantics is inductively
defined similar to Baier and McIlraith in [19] as follows.

Definition 3. let 0 ≤ i < n:

σ[i..n) |=f P = JP K σi
σ[(n−1)..n) |=f Xϕ = false
σ[i..n) |=f Xϕ = σ[i+1..n) |=f ϕ, if i < n−1
σ[i..n) |=f ¬ϕ = not (σ[i..n) |=f ϕ)
σ[i..n) |=f ϕ U ψ = (∃k : i ≤ k < n : σ[k..n) |=f ψ

and (∀ℓ : i ≤ ℓ < k : σ[ℓ..n) |=f ϕ))
σ[i..n) |=f ϕ ∧ ψ = σ[i..n) |=f ϕ and σ[i..n) |=f ψ

Standard derived operators like always □, eventually ♢ and
implication → are defined as usual [8], [19].

2) LTL with time interval constrain: In certain contexts,
achieving a specific system state in a certain time interval
can be of interest, e.g. when the timing of events determines
behavior correctness. Metric Temporal Logic (MTL) [17] is an
extension of LTL that allows specifying real-time constrains
for timed systems. Unlike classic LTL, that expresses ordering
of events in time qualitatively, MTL can quantitatively express
real-time constraints. Incorporation of such time interval con-
straints on LTLf in this paper is inspired by MTL:

Definition 4. Relative-timed until operators

σ[i..n) |=f ϕ U∼[a,b] ψ = (∃k : i≤k<n : σ[k..n) |=f ψ,
timek − timei ∈ [a, b],
(∀ℓ : i≤ℓ<k : σ[ℓ..n) |=f ϕ))

♢∼[a,b]ϕ = true U∼[a,b] ψ

So, interpreting over σ[i..n), ϕ U∼[a,b] ψ requires ψ occurs
within a time interval [a, b], relative to the time sampled at σi.
However, sometimes it is desired to specify time constraints
in terms of absolute time. With absolute timing, events are
described in relation to an external reference point, simplifying
understanding the occurrence of events. The variation of the
until-operator U with absolute timing is as follows:

Definition 5. Absolute-timed until operator

ϕ U[a,b] ψ = ϕ U (ψ ∧ time ∈ [a, b])

The ♢[a,b]ϕ with absolute timing is analogous to the relative
time variant in Def. 4. Lower-bound-only I=[a,∞], and upper
bound-only I=[0, b] can also be applied analogously. From
now on, we refer to a time interval as I in formulas.

C. EmoSTL Temporal Expression Semantics

Here, we define the semantics of seq and its timed-variation
seqI which are used to express an order in which properties, or
their absence, are expected to occur. Definition of other tem-
poral operators remains the same as LTLf . seq is introduced
to simplify emotional specification writing. The primary goal
of designers is to identify the occurrence of emotions and the
triggers that cause them [24], [25]. With seq syntax, designers
more effectively write spatial-temporal testing specifications
while maintaining order and addressing changes in emotional
intensity. Intuitively, seq[P1;P2;P3] means P1 is expected to
happen in the future, followed by (not necessarily immedi-
ately) P2, and then by P3. However, for an ’absence’ element,
expressing the absence of a positive element, seq would mean
that the absence should persist until the next element in the
sequence occurs. For example, seq[absence P1;P2] means
¬P1 U P2 rather than ♢(¬P1 ∧X♢P2). This explains why in
the syntax in Eq.(8) only non-absence elements are allowed to
have a time interval I –As observed in the example, the until-
operator U allows for specifying a time interval for when P2

should occur, but this concept doesn’t make sense for ¬P1.
The precise definition of seq is given below.

4

Definition 6. Let T be a sequence [e1; ...; en]; the semantic
of seq [e1; ...; en] with no time constraint on elements ei is:

Jseq T K =

{
♢JT K , if T starts with a non-absence element
JT K , if T starts with an absence element

The semantic of the inner structure of the sequence JT K is
defined recursively, as follows:

JP ;T K =

{
P ∧X♢JT K, if T starts with a non-absence e

P ∧XJT K, if T starts with an absence element

Jabsence P ; T K = ¬P U JT K
Jabsence P K = □¬P
JP K = P

Below are two examples of sequences with three formulas,
one starting with a non-absence element and the other with
the absence element, with their translations into LTLf :

seq[P1; absence P2;P3] = ♢(P1 ∧ X (¬P2 U P3))
seq[absence P1;P2; absence P3] = ¬P1 U ♢(P2 ∧X □¬P3)

Definition 7. Consider a formula seq[e1; ..; ek; ..; en], where
ek may have a time constraint. Such a constraint is only
possible if ek is a non-absence element. Then, the definition
remains the same as the case without time constraint (Def. 6),
with the following extension:

• If T starts with a time-constrained element P I , Jseq T K =
♢IJT K. Otherwise, Jseq T K is the same as in Def. 6.

• For the inner structure of sequence, if T starts with a
time-constrained element eI1, then:

– JP ;T K = P ∧ ♢IJT K,
– J absence P ; T K = ¬P UI JT K.

• For other cases, JT K is the same as in Def. 6.

For instance, seq [P I1
1 ; absence P2; P

I2
3], where I1 and I2

are not in conflict, is translated into LTLf as:

seq [P I1
1 ; absence P2; P

I2
3] = ♢I1(P1 ∧X(P2 UI2 P3))

Finally, the outer time interval over a seq, written as
seq I [e1; ...; en], can be defined by distributing I over every
non-absence element in the sequence.

D. Satisfiability and Validity Check

Let S be the set of game traces collected from players.
Given a temporal formula ϕ, we are interested in three types
of verdict for ϕ: whether there is no counter-example of ϕ can
be found within the traces in S, whether there is no trace that
satisfies ϕ, and whether there is at least one trace (or with a
certain minimum ratio of traces c) satisfying ϕ:

S |= valid ϕ = (∀σ ∈ S :: σ |= ϕ)
S |= unsat ϕ = (∀σ ∈ S :: σ |= ¬ϕ)
S |= sat ϕ = (∃σ ∈ S :: σ |= ϕ)

S |= satc ϕ = (| {σ∈S:: σ|=ϕ} |
| S | ≥ c)

(9)

V. CASE STUDY

This section describes two research questions and the
approach we employ to conduct our study to answer them.
As explained earlier, PX testing lacks a formal language to
accurately capture and articulate the nuances of emotions. The
absence of a standardized language makes the formal verifi-
cation of emotional experience requirements challenging. We
investigate the following research questions for the proposed
language EmoSTL (Section III) that allows the formulation
of emotion requirements as formal specifications.

RQ1: Is it possible to formulate emotional require-
ments given by developers into formal specifications
using EmoSTL?
RQ2: Can we validate EmoSTL specifications
crafted for assessing emotional experiences?

A. Formulating Emotion requirements: User Study

We conduct a user study with skilled software engineers to
address the RQ1. Here, we explain the experimental setup and
its findings. The experiment is structured as 6 stages:

1) Game under study. We selected a game called Lab
Recruits [26], a configurable 3D game developed with
the Unity game engine, designed specifically for software
engineers (SEs) to test their automated game testing
approaches on test scenarios. This study uses a newly
crafted level that still needs emotional experience assess-
ment and possible adjustment before the release.

2) Tutorial. We designed a tutorial session in which partici-
pants were trained on how to play the game and received
a summary of what emotion and game experience are.

3) Task design. The tasks focus on two dimensions: first on
their experience as players and later on their perspective
as testers to write requirements for emotions.

4) Participants. We asked five skilled software engineers in
testing and verification to participate in our study.

5) Pilot. We perform a pilot study to identify issues with
the tutorial, tasks, and session.

6) Experiment session. We designed group sessions to let the
participants play the game, perform the tasks and collect
the data to answer the first research question.

Below, we provide further elaboration on the stages.
Game under study: Figure 2 shows scenes of Lab Recruits

game which presents a maze environment with rooms, doors,
and buttons, sometimes accompanied by zombies and fire
hazards. The primary objective is to reach the end-game
healing flag, which is protected behind doors and by zombies.
To have access, players must uncover the associations between
buttons and doors in different areas which forms a chain
of dependencies. Without preceding knowledge, the player
needs to reveal the correlation between buttons and doors to
find a path to the final goal flag. Points can be earned by
opening doors, but players must avoid fire hazards, contact
with zombies, and falling from buildings, designed to make
navigation of certain areas difficult. If the player either falls
down or reaches zero health points, the game ends in failure.

5

Fig. 2: Scenes of the Lab Recruits game.

The Lab recruits level under test for the upcoming experiment
highly resembles the Castle Zenopus level in the world of
Dungeons & Dragons as shown earlier in Figure 1. The crafted
level is a large level (217m × 208m) with 9 rooms, 23 buttons,
27 doors, 16 zombies, and over 50 fire hazards.

Tutorial sessions: Participants receive an email with a
download link for a standalone version of the game. The email
also includes the assigned level, a summary of the emotional
experience, an overview of the experiment and its objectives,
as well as a set of experiment rules and ethical principles.
On the day of the experiment, participants are given a tutorial
session on the game mechanics, ensuring they understand how
to play it. Additionally, any questions they may have are
answered before the start of the experimental session.

Task design: Three tasks are defined for participants: T1-
after the tutorial, participants individually play the game level
for 10 minutes, to reflect on the impact of the game design
on their emotional experience and essential emotional require-
ments for subsequent tasks. T2- is to answer the question
based on their personal experience and feelings as players.
The purpose of this task is to evaluate participants’ overall
perception of the game. T3- involves participants taking on the
role of the game designer, utilizing their skills in testing and
verification to write 5 requirements of emotions without any
constraint in a natural language; These requirements should
capture emotions and patterns they find important to know as
testers or anticipate to occur or never occur within the game.
The goal of this task is to answer the RQ1 by evaluating
the strength of EmoSTL to formulate the participants’ set
requirements. We aim to effectively capture and articulate the
expert-like requirements with the language. To complete all
these three tasks, participants are provided with the layout of
the level with the room labels, a table of emotions with their
psychological meaning, and real-life examples of emotions
based on the definition of emotions by Ortony, Clore, and
Collins (OCC) [18]. Additionally, participants receive a table,
showcasing examples of simple emotional requirements.

Participant: An open invitation is sent to researchers and
developers in a software division of a university, target people
with at least 2 years experience in software testing and veri-
fication. In total, we selected 5 volunteers for the experiment:
four Ph.D. students and one bachelor-level software engineer
to run the pilot study. All had prior experience as game players.
In the sequel, we refer to the participants as SEs.

Pilot: A pilot is performed with a bachelor level software
engineer to assess the clarity of the experiment’s tasks and
optimize the workload. After the pilot, questions are adjusted
and the session is reduced to 50 minutes.

Experiment session: Upon completing a 10-minute game-
play, participants are required to answer the questionnaire,
which includes writing requirements using Wooclap [27].
Results. First, we present the participants’ personal emo-
tional experience results for the game(T2). Following that,
we offer formalization of written requirements as EmoSTL
specifications. Given a list of emotions, participants are asked
to express their general experience during the game-play
with up to two most significant emotions. Emotions such as
excitement, fear, and frustration are reported which predom-
inantly lean toward negative polarity. To graphically show
the reported emotions in a two-dimensional space, we rely
on the definition of emotion in terms of Pleasure, Arousal,
and Dominance (PAD) dimensions [28] to map emotions.
Mehrabian and Russel [28], [29] present a model in which
every single emotion can be quantitatively expressed in terms
of three dimensions as Pleasure, Arousal, and Dominance. A
series of studies [29], [30] suggest the polarity and values
of various emotions in three dimensions of PAD model us-
ing verbal-report, physiological, and behavioral measuring of
emotions done which serve as evidence of the representations
of emotions into the PAD dimensions. Figure 3 shows the
emotion diversification of the player’s experience of the game,
mapped on Pleasure-Arousal dimensions. The result shows
that despite having positive emotions such as joy and hope,
the level mostly elicits negatively-pleasured emotions such
as fear which can potentially be the intended feature of the
game. All reported emotions are positively aroused emotions.
The presence of arousal reported emotions shows that the
crafted game level evokes emotional responses in players and
therefore we chose this game level to evaluate the ability of
EmoSTL in capturing emotion requirements as specifications.

Pre-processing of requirements. The purpose of the expert
study is to evaluate the ability of EmoSTL to formulate
real software engineers’ set emotion requirements as indicated
in RQ1. To do so, the requirements first undergone a pre-
processing procedure to remove e.g. fragments that pose un-
realistic requirements or redundant fragments that only serve
as providing clarification or explanation towards an asserted

6

Fig. 3: Emotion diversification of players’ experience for the
’Castle Zenopus’ level in Lab Recruits game.

main specification. An example of such requirements is R3:
”every player would feel a bit worried about going through
area G since there is fire there”. The underlined fragment
only provides an explanation for the non-underlined part; so it
is dropped by the pre-processing. Additionally, fragments that
refer to information that is technically infeasible to obtain and
is not relevant for the purpose of this study, are also dropped.
R2 is an example of this: ”every player would feel anticipation
on how to go through the fire in area G without dying,
as well as if it is worth to press the button in that area”. The
underlined part refers to the value of doing an action, which is
hard to infer. So, that part is omitted. There are also three cases
in which the participant describes their unwanted experience
with a game setup rather than outlining a requirement. For
example, they express their dissatisfaction with the lack of
challenge posed by the zombies, as in R15: ”Most players
will feel dissatisfied that the zombies do not really pose a
challenge”. However, instead of dropping it, we address such
cases by checking its negation which in this case is turned into
the revised assertion: ”Some players will not feel dissatisfied
with the challenge posed by the zombies”. We also applied
the same approach for R5 and R11, expressing undesired
behavior, as agreed upon by the requirement writer. In general,
there are only a few requirements among 25 requirements that
have been adjusted; The rest remain unchanged.

Table I lists a subset of the requirements set by the five
software engineers, and their formalization using EmoSTL.
We choose to interpret a presence of an emotion e.g. feeling
excited as observing an increase in that specific emotion from
its baseline state. The main reason for such translation is that
a presence of an emotion such as excitement, often implies a
state of transition from a baseline state (considered as zero) to
some intensity value, suggesting a rising level of excitement.
Thus, the presence of emotion and an increase in the level
of present emotion are both denoted by primed-variables e.g.

Exct′. Collected dataset along with the translation of all re-
quirements into EmoSTL formal specifications are available1.

Since the focus of this part of the study is to assess
EmoSTL’s ability in formulating emotion requirements, the
specifications are written with the assumption that referred
emotion types (e.g. fear) can be captured within the traces on
which the specifications are to be verified, e.g. by employing
data collection approaches such as player self-reports, facial
expression recognition, or intelligent emotional agent mod-
eling. As can be seen in Table I, not only can spatial and
temporal specifications be captured, but the DSL also allows
functional and emotional properties to be combined within
a specification (e.g. specification R2 in Table I) as long as
the traces encompass the necessary information which can
be treated as ordinary-variable in the DSL.We will refer to
these specifications as mixed specifications. Among 25 set
requirements, there are two requirements that need access to
data at two arbitrary times in the past for comparison. One
is ”The player feels more nervous for the first time that they
pass room G compared to their first time in room F1 for all
gameplays.” and the other is ”Every player feels decreasingly
anxious every time that they pass room G”. Formulation of
them involves access to two distinct moments which goes
beyond the expressiveness of the current version of the DSL,
which provides access only to the current and the preceding
state at any given time. It is technically possible to add this
feature. However, how to do this efficiently with low time
complexity is a topic for future work. Figure 4 shows the
statistics of EmoSTL terms used for the translation of the 23
set requirements into specifications. In the figure, ’functional
term’ is a fragment that expresses a condition over the
functionality of the game. As can be seen, seq and spatial terms
are the most frequently employed terms in the translations,
appearing in 21 out of 23 instances (0.91) and 17 out of 23
instances (0.74), respectively, indicating the usefulness of such
terms. Another interesting finding from the user study is that
experts tend to often formulate mixed requirements that target
both functional and emotional aspects of a game. This occurs
in 11 out of 23 instances(0.47). Additionally, despite relatively
limited use of absence and sustain terms in specifications, their
inclusion enriches the language’s expressiveness, allowing it
to address critical special cases. Furthermore, we evaluate
the length of specification in EmoSTL and compare it with
the equivalent specification in LTLf . The length of the
specification is defined as the number of all operators. Figure 5
illustrates the lengths of the specifications written in EmoSTL
are 17.5% shorter than those in plain LTLf , with a greater
reduction of 22.5% for plain LTLf formulas larger than
four. It’s important to note that this reduction in length not
only enhances usability and ease of specification writing but
also improves understanding, as LTLf specifications become
challenging and harder to understand as they grow in length.

1https://zenodo.org/record/8409957

7

TABLE I: Emotion requirements from the user study with their formalization as EmoSTL specifications.

No. Emotion requirements EmoSTL formalization
R1 Every player would feel excited at the beginning of

the game, in area P.
valid ϕ = seq[0,b] [P.Excit′], where Excit′ refers to the excitement increase
in the collected trace and [0, b] is the duration considered to be the beginning of
the game by the SE.

R2 Every player would feel anticipation on how to go
through the fire in area G without dying.

valid ϕ = seq [G] → seq [G ; G.(Antcp′ ∧ hp>0)], where Antcp′ refers
to anticipation increase and hp is the health point which must be greater than zero
for the player to remain alive.

R4 There is at least a game-play in which a player would
feel hopeful to complete the game as soon as they
reach room F2.

sat ϕ = seq [F2 ; F2.H′ ∼[0,b]], where H′ refers to the hope increase in the
traces and b is some reasonable time upper bound that is decided by SE to capture
”as soon as”.

R5 There is no game-play in which a player would feel
a bit disappointed after walking for a while in rooms
P, G and F1.

unsat ϕ = and(seq[P], seq[F1], seq[G], seq[P′]), where P′ refers to the
disappointment increase in the traces.

R6 When every player begins playing the game, they
should be pleased to accomplish something right
away like pressing a button (b0 or b1).

valid ϕ = seq [(pressedb0 ∨ pressedb1)
[0,a] ; Plsd′[0,b]], where a and b

represent upper bounds on the time considered as the beginning of the game (’right
away’) by SEs, pressedb0 and pressedb1 are the status of buttons and Plsd′

refers to an increase in pleasure emotion in the traces.
R7 Every player should feel a sense of fear as well as

joy at least once in the whole game even if they lose
the level fairly quickly.

valid ϕ = and(seq [J′], seq [F′]), where J′ and F′ are the increase in joy
and fear in the traces.

R8 There is a game-play in which the player keeps hopes
that fire flames in room G can be avoided easily.

sat ϕ = seq [G ; sustain(G.h > 0) ; ¬G], where h refers to hope variable
in the traces. Note that the fire flames are the only elements within room P that,
when touched, change the level of hope in a player to win the level.

R10 There is at least one game-play in which the player
should pass a challenge to reach a closed door d1
and within the next 10 seconds realize that they need
to come back and feel nervous.

sat ϕ = seq[closedd1 ∧ reachedd1 ;Nrv′∼[0,10sec]], where closedd1 is a
variable representing whether the door d1 is closed, and reachedd1 means means
that the player is nearby that door. Nrv′ refers to the increase in nervousness in
the traces.

R12 In at least one game-play, a player will be confused
and disappointed after pressing the button at the
bridge in room G which controls the door between
rooms G and F1, if they have not learned yet that
pressing a button twice will close the door again.

sat ϕ = seq[¬pressedbBridge; pressedbBridge; ¬pressedbBridge;G.Conf ′

∧G.P′], where pressedbBridge refers to the status of the bridge button, Conf ′

and P′ to respectively to confusion and disappointment increase in the traces.

R13 Some players will feel delighted after they pass
through the fire in room G and gain their health back
by interacting with a healing flag in room P.

satc ϕ = and(seq[G; interactedflagp ∧ HP′], seq [P.Deltd′]), where
interactedflagp is the status of the specific flag (ordinary− variable), HP′

refers to the rise in health point after the last state, Deltd′ is the increase in
emotion delight in the traces and c is the ratio of traces that need to satisfy the
specification.

R14 Some people may feel fear when encountering the
zombies in room F1.

satc ϕ = seq[F1.nearEnemy;F1.F′], where nearbyEnemy shows whether
the player got close to the enemy and F′ is the increase in the fear variable in the
traces.

R15 Some players will not feel dissatisfied with the
challenge posed by the zombies.

satc ϕ = always (nearEnemy → ¬ Dissat′), where nearbyEnemy shows
whether the player got close to the enemy and Dissat′ show an increase in
dissatisfaction emotion in the traces.

R16 Players always feel a sense of fear when faced with
the zombies in room F2.

valid ϕ = always (F2.nearEnemy → seq [F2.F ′]) , where F′ is the
increase in the fear variable in the traces.

R18 If the player first moves towards F1 via corridor GF1,
and meets the closed door there, they will typically
feel anticipation for going the other way, finding out
how to open this door.

valid ϕ = seq[GF1 ∧ closeddoorF1]→seq[GF1.Antcp′ ∧ closeddoorF1],
where closeddoorF1 refers to the status of the door and Antcp′ is an increase
in anticipation emotion in the traces.

R19 Some player always feels joyful when reaching the
finish flag alive.

satc ϕ = seq[Finish ∧ hp > 0 ∧ J′], where Finish is the status of the game,
hp is the health point and J′ is the increase in joy field in the traces.

R22 Every player feels nervous when they enter room F1
for the first time.

valid ϕ = seq[F1]→seq[absence F1 ; F1 ; F1.Nrv′], where Nrv′ is the
increase in nervousness in the traces.

Fig. 4: Statistics of terms in set specifications.

RQ1 summary. The result of our user study shows
the proposed DSL allows us to formally capture the
important properties of set emotion requirements.

B. Verification of Emotion Specification

In this section, we explain the result of the formal ver-
ification of the set emotion specifications in Table I to
answer the RQ2. To monitor a specification in offline run-
time verification, acquiring execution traces is crucial. For
emotion verification, these traces can be acquired by different
methods such as self-reported emotions [31], facial expression

8

Fig. 5: LTLf and EmoSTL formula length comparison.

recognition [32], [33], physiological measurement [34], [35],
or emotion reasoning using an intelligent agent [36]–[39]. We
employ the latter approach, proposed by Ansari et.al [16], [38]
that utilizes a computational model of emotions using the OCC
emotion theory to reason about the emotional state of an agent
during the game based on perceived events and the agent’s
goal. To have an intelligent agent, we employ a Belief-Desire-
Intent (BDI) [40] technique for the agent’s decision-making
process to explore and pursue its goal to win the game level.
While the strategy is outlined by the developer at a higher
level, the agent’s BDI decision-making mechanism determines
how to pursue the game within the provided strategy. We use
Aplib [41], an agent programming library, that is developed to
facilitate this particular approach. Here, we use eight distinct
strategies, including one that takes the shortest path to the goal
and another that explores all rooms before reaching the finish
point. These strategies are designed to align with the sensical
approaches typically employed by human players when they
play a Lab Recruits level. This led to eight distinct game
executions, each leading the agent on a different path that
may either result in victory or defeat (see Table II). These
game executions can represent a broader player base, as some
players make similar choices and traverse similar paths during
their play . Throughout the execution, the agent not only makes
the decision for its next action upon observing events but
also computes its emotional state (using the model in [38])
which is then recorded in a trace file. The resulting eight trace
files are then used to verify the earlier formulated emotion
specifications in Table I. The specifications are designed
independently of the emotions that a system can identify.
However, the ability of offline verification relies on the trace
files. In this context, some emotions mentioned in Table I, e.g.,
nervousness, do not correspond to OCC’s primary emotion
categories and, therefore, are not computed using the model
[38]. We, nevertheless, tackle this problem by mapping such
emotions to the primary OCC emotion types. This approach
is grounded in the OCC theory, where certain emotions are
perceived as tokens or synonyms of the primary emotions [18].
Among 23 formal specifications in our case, there are only
two of them that cannot be mapped via OCC emotion tokens,
namely confusion and dissatisfaction in R12 and R15, which

TABLE II: Characteristics of traces gathered from agent executions.

No. Game interactions # Execution time (ms) Game status
1 999 97,295 Lose
2 1,872 174,495 Win
3 2,124 208,881 Win
4 3,002 222,818 Lose
5 3,028 247,107 Win
6 3,113 278,615 Win
7 3,177 218,184 Lose
8 4,091 355,332 Win

TABLE III: Emotions and their tokens based on OCC theory [18]

Primary emotion Tokens
Hope anticipation, excitement, expectancy,hopeful
Fear worried, anxious, fright, nervous, scared, terrified
Joy delighted, pleased, feeling good, happy,glad, joyful

Disappointment despair, frustration, heartbroken

are associated with secondary/complex emotions, resulting
from a combination of other emotions and not categorized as
primary emotions. The rest can be accommodated within the
OCC tokens as shown in Table III which are then mapped to
the corresponding primary emotions for the verification. R17
is also excluded as it refers to an emotional response triggered
by the game’s sound effect; for technical reasons, it was not
possible to trace the sound effect.

Table IV shows the verification results of the 20 speci-
fications. The constant values of the specifications, such as
time boundaries and satisfaction ratio satc (here, 0.25) are
chosen by the game designer based on the reasonableness of
the game’s configuration. The pre-conditions of implicative
specifications are also tested separately and they occur at
least once in the trace files. The results show that 16 of 20
specifications have passed the verification, and only R6,R7,
R18 and R25 are failed. The main reason behind failing
R6,R7, R18 is due to the current game design. This shows that
the specifications can actually detect issues within the current
game design. Note that imposing valid-type of assertions for
some requirements such as R18 may actually be overly-
restrictive as individual players may respond emotionally
differently to the game dynamism. Detecting such issues is
valuable to help in negotiations between game designers and
testers on potential adjustments to either the game design
or the requirements. EmoSTL 2, the user study, the agent
simulations, along the trace files are publicly available.

2https://github.com/SabaGholizadehAnsari/ltl-pxevaluation.git

9

TABLE IV: Emotion Specification Verification: ’Castle Zenopus’
Level Results.

No. Emotion Specification Verified
R1 valid ϕ = seq[0, 7sec] [P.H ′] ✔
R2 valid ϕ = seq [G] → seq [G ; G.(H ′ ∧ hp > 0)] ✔
R3 valid ϕ = seq [G] → seq [G.F ′] ✔

R4 sat ϕ = seq [F2 ; F2.H ′ ∼[0, 2sec]] ✔
R5 unsat ϕ = and(seq[P], seq[F1], seq[G], seq[P ′]) ✔

R6 valid ϕ = seq [(pressedb0 ∨ pressedb1)
[0, 30sec] ; J ′[0, 50sec]] ✗

R7 valid ϕ = and(seq [J′], seq [F′]) ✗
R8 sat ϕ = seq [G ; sustain(G.h > 0) ; ¬G] ✔
R9 valid ϕ = seq[F2] → seq[F1.F ′] ✔

R10 sat ϕ = seq[closedd1 ∧ reachedd1 ;F ′[0,10sec]] ✔
R11 ϕ sat = and(seq[G], seq[absence G.P ′]) ✔
R13 sat 0,25ϕ = and(seq[G; interactedflagp ∧HP′], seq [P.J′]) ✔
R14 sat 0.25ϕ = seq[F1.nearEnemy;F1.F ′] ✔
R16 valid ϕ = always (F2.nearEnemy → seq [F2.F ′]) ✔
R18 valid ϕ = seq[GF1 ∧ closeddF1] → seq[GF1.H ′ ∧ closeddF1] ✗
R19 sat 0.25ϕ = seq[Finish ∧ hp > 0 ∧ J ′] ✔
R20 sat 0.25ϕ = seq[G.F ′] ✔
R22 valid ϕ = seq[F1]→seq[absence F1 ; F1 ; F1.F ′] ✔
R24 sat ϕ = seq[F2.J ′] ✔
R25 unsat ϕ = seq[P.h ≤ 0] ✗

RQ2 summary. The verification results confirm that the
formulated emotion specifications can be monitored in
a real-game scenario and EmoSTL contributes to the
detection of game design issues.

Threat to Validity.: As external threats, performing the
experiment on one game may not be generalizable. However,
we believe EmoSTL can be used for formal verification of
emotion-inducing games such as role-playing games like Dun-
geons & Dragons Online, provided that emotions are captured
via a data collection method. To mitigate errors in translating
informal requirements into formal specifications due to some
pre-processing as an internal threat, we reduce pre-processing
and two authors reviewed both the pre-processing and the
formal specifications and modify those on which they do not
agree. Moreover, the emotion traces generated by an artificial
agent using the OCC emotion model might not align closely
enough with human experiences. but using the OCC emotion
model as ground truth still allows for rapid feedback.

C. Time Complexity of EmoSTL
We examine the performance of the proposed lan-

guage EmoSTL. Figure 6 illustrates the performance of
EmoSTL with respect to different trace and formula
lengths. We are applying two formulas: Formula1 =
seq[A1.H′; absence F′;H′] and one with a time constraint:
Formula2 = seq[5000,50000][A1.H′; absence;F′;H′] to
evaluate the execution time of our approach across differ-
ent trace lengths ranging up to 100 thousand. Moreover,
to see how the formula influences performance we test it
using formulas with increasing length, up to 20. Families
Formula3 and Formula4 are introduced that each consists
of a sequence with a repeated H′; absence F′ pattern as
seq[H′; absence F′;H′; ...] up to length 20, noting that
Formula4 includes an outer time constraint of [0, 5000].
Both graphs in Figure 6 demonstrate the linear execution
time of EmoSTL over different trace and formula lengths.
While implementing the language literally as its semantics
would result in polynomial execution time, our optimized
implementation makes the execution time linear.

Fig. 6: EmoSTL performance tests

VI. RELATED WORK

In the realm of verifying functional aspects in games,
some approaches have been proposed [42]–[44]. The recent
shift from conventional functional testing to the evaluation
of player experience has transformed this domain within
game research. Kim and Doh [25] explore a new method to
model players’ emotional response patterns to story events
in video games, by combining the OCC emotion structure
and D. Price’s emotional intensity equation [45]. The study
compares the emotional response patterns of players in suc-
cessful and unsuccessful video games. Successful games elicit
more frequent emotion transitions, diverse emotion types,
and higher intensity of emotions in players compared to
unsuccessful ones. The authors introduce emotion transition
pattern graphs and emotion transition distance graphs as visual
tools to help game designers improve the structure of story
events to evoke desired emotional responses in players. Gow
et al. [46] evaluate player experience using the post-game
commentaries. It involves players providing verbal reports by
watching the playback of a recorded video of their gameplay.
Commentaries are categorized into seven player experience
dimensions, including challenging (easy-hard) and engaging
(interested-bored) experiences. The approach allows scene-by-
scene evaluation of the player experience and their overall
share, in a single level of a third-person shooter game. Despite
similarities between [46] and our research in capturing player
experience feedback, the first does not include a specification
language for expressing and verifying certain experiences. To
address this issue, we establish a formal language for more
accurate evaluation, helping in identifying design issues.

Towards expressing emotional requirements in the game
domain, Callelle et al. [47] particularly focus on capturing
emotional requirements in terms of the designer’s intent.
They employ emotional terrain maps in which emotions are
expressed in terms of color codes in the game world, emotional
intensity maps using luminance, and emotion timelines to
visually express emotional requirements. The approach was
later improved in [24] to provide a more comprehensive ap-
proach that includes e.g. the explicit identification of potential
locations for emotion markers to ultimately create libraries of
emotion prototypes to identify emotion patterns in the future.

10

However, their approach lacks a language for expressing
spatial-temporal requirements with an automated verification
mechanism to ensure the game meets its requirements. Miguéis
et al. [48] propose a design of a DSL to model emotion
requirements for the video game industry. The paper outlines
the development of a meta-model though it lacks formal
semantics, so the formal verification will not be possible.
Miller et al. [49] introduce a notation of emotional goals
into requirements models. They differentiate between personal
emotional goals, which model the emotional desires of users,
and context-specific emotional goals, which represent the de-
sired effects of a system on its users. Results on the improved
design of an emergency system that addresses the emotional
needs of users show greater user satisfaction. Nevertheless, the
study does not encompass spatial-temporal aspects, nor does
it possess formal semantic support.

VII. CONCLUSION & FUTURE WORK

This paper introduces EmoTL, a Domain Specific Language
based on LTL, extended with spatial information and time
intervals to let game developers formally specify requirements
of emotions and verify them on the game in the early develop-
ment stage to receive fast feedback. The approach is evaluated
with the software engineer-designed PX requirements which
are then formalized and tested on a specific game. The study
demonstrates EmoTL fulfills the majority of demands in
translating designed requirements into specifications. Such an
intuitive language for automated emotion verification assists in
evaluating players’ emotions, fine-tuning a game’s difficulty,
and ultimately contributing to the creation of a well-designed
gaming experience. We aim to use EmoSTL for the evalua-
tion of commercial games. Acknowledgement: This project is
funded by the EU H2020 Programme grant nr. 856716.

REFERENCES

[1] A. Drachen, P. Mirza-Babaei, and L. E. Nacke, Games user research.
Oxford University Press, 2018.

[2] G. N. Yannakakis and A. Paiva, “Emotion in games,” Handbook on
affective computing, vol. 2014, pp. 459–471, 2014.

[3] N. Lazzaro, “Why we play: affect and the fun of games,” Human-
computer interaction: Designing for diverse users and domains, vol.
155, pp. 679–700, 2009.

[4] E. D. Mekler, J. A. Bopp, A. N. Tuch, and K. Opwis, “A systematic
review of quantitative studies on the enjoyment of digital entertainment
games,” in Proceedings of the SIGCHI conference on human factors in
computing systems, 2014, pp. 927–936.

[5] M. Montola, “The positive negative experience in extreme role-playing,”
The Foundation Stone of Nordic Larp (2010), vol. 153, 2010.

[6] M. V. Birk, I. Iacovides, D. Johnson, and R. L. Mandryk, “The
false dichotomy between positive and negative affect in game play,”
in Proceedings of the 2015 Annual Symposium on Computer-Human
Interaction in Play, 2015, pp. 799–804.

[7] J. Woodcock, P. G. Larsen, J. Bicarregui, and J. Fitzgerald, “Formal
methods: Practice and experience,” ACM computing surveys (CSUR),
vol. 41, no. 4, pp. 1–36, 2009.

[8] A. Pnueli, “The temporal logic of programs,” in 18th Annual Symposium
on Foundations of Computer Science (sfcs 1977). ieee, 1977, pp. 46–57.

[9] C. Baier and J.-P. Katoen, Principles of model checking. MIT press,
2008.

[10] F. M. Maggi, M. Westergaard, M. Montali, and W. M. van der
Aalst, “Runtime verification of ltl-based declarative process models,”
in International Conference on Runtime Verification. Springer, 2012,
pp. 131–146.

[11] I. Lee, S. Kannan, M. Kim, O. Sokolsky, and M. Viswanathan, “Runtime
assurance based on formal specifications,” Departmental Papers (CIS),
p. 294, 1999.

[12] A. Agarwal and A. Meyer, “Beyond usability: evaluating emotional
response as an integral part of the user experience,” in CHI’09 Extended
Abstracts on Human Factors in Computing Systems. ACM New York,
NY, USA, 2009, pp. 2919–2930.

[13] R. Alves, P. Valente, and N. J. Nunes, “The state of user experience
evaluation practice,” in Proceedings of the 8th Nordic Conference on
Human-Computer Interaction: Fun, Fast, Foundational, 2014, pp. 93–
102.

[14] A. P. Vermeeren, E. L.-C. Law, V. Roto, M. Obrist, J. Hoonhout,
and K. Väänänen-Vainio-Mattila, “User experience evaluation methods:
current state and development needs,” in Proceedings of the 6th Nordic
conference on human-computer interaction: Extending boundaries,
2010, pp. 521–530.

[15] (2006) Dungeons & dragons online: Back to basics. [Online]. Available:
https://ddowiki.com/page/Back to Basics

[16] S. G. Ansari, I. Prasetya, D. Prandi, F. M. Kifetew, M. Dastani,
F. Dignum, and G. Keller, “Model-based player experience testing
with emotion pattern verification,” in International Conference on
Fundamental Approaches to Software Engineering. Springer Nature
Switzerland Cham, 2023, pp. 151–172.

[17] R. Koymans, “Specifying real-time properties with metric temporal
logic,” Real-time systems, vol. 2, no. 4, pp. 255–299, 1990.

[18] A. Ortony, G. Clore, and A. Collins, “The cognitive structure of
emotions. cam (bridge university press,” Cambridge, England, 1988.

[19] J. A. Baier and S. A. McIlraith, “Planning with first-order temporally
extended goals using heuristic search,” in AAAI, 2006, pp. 788–795.

[20] W. M. Van Der Aalst and M. Pesic, “Decserflow: Towards a truly
declarative service flow language,” in Web Services and Formal Methods:
Third International Workshop, WS-FM 2006 Vienna, Austria, September
8-9, 2006 Proceedings 3. Springer, 2006, pp. 1–23.

[21] M. C. Mayer, C. Limongelli, A. Orlandini, and V. Poggioni, “Linear
temporal logic as an executable semantics for planning languages,”
Journal of Logic, Language and Information, vol. 16, pp. 63–89, 2007.

[22] G. De Giacomo, M. Y. Vardi et al., “Synthesis for ltl and ldl on
finite traces,” in Proceedings of the Twenty-Fourth International Joint
Conference on Artificial Intelligence, IJCAI 2015. AAAI Press, 2015,
pp. 1558–1564.

[23] U. Sammapun, I. Lee, O. Sokolsky, and J. Regehr, “Statistical runtime
checking of probabilistic properties,” in Runtime Verification: 7th In-
ternational Workshop, RV 2007, Vancover, Canada, March 13, 2007,
Revised Selected Papers 7. Springer, 2007, pp. 164–175.

[24] D. Callele, E. Neufeld, and K. Schneider, “Visualizing emotional
requirements,” in 2009 Fourth International Workshop on Requirements
Engineering Visualization. IEEE, 2009, pp. 1–10.

[25] M. Kim and Y. Y. Doh, “Computational modeling of players’ emotional
response patterns to the story events of video games,” IEEE Transactions
on Affective Computing, vol. 8, no. 2, pp. 216–227, 2017.

[26] (last accessed October, 2023.) Lab recruits wiki. [Online]. Available:
https://github.com/iv4xr-project/labrecruits/wiki

[27] (last accessed October, 2023.) Wooclap. [Online]. Available:
https://www.wooclap.com/

[28] A. Mehrabian and J. A. Russell, An approach to environmental psychol-
ogy. the MIT Press, 1974.

[29] J. A. Russell and A. Mehrabian, “Evidence for a three-factor theory of
emotions,” Journal of research in Personality, vol. 11, no. 3, pp. 273–
294, 1977.

[30] A. Mehrabian, “Pleasure-arousal-dominance: A general framework for
describing and measuring individual differences in temperament,” Cur-
rent Psychology, vol. 14, pp. 261–292, 1996.

[31] K. R. Scherer and B. Meuleman, “Human emotion experiences can be
predicted on theoretical grounds: Evidence from verbal labeling,” PloS
one, vol. 8, no. 3, p. e58166, 2013.

[32] S. Asteriadis, K. Karpouzis, N. Shaker, and G. N. Yannakakis, “Towards
detecting clusters of players using visual and gameplay behavioral cues,”
Procedia Computer Science, vol. 15, pp. 140–147, 2012.

[33] K. Kutt, D. Drkażyk, L. Żuchowska, M. Szelkażek, S. Bobek, and G. J.
Nalepa, “Biraffe2, a multimodal dataset for emotion-based personaliza-
tion in rich affective game environments,” Scientific Data, vol. 9, no. 1,
p. 274, 2022.

[34] C. van Reekum, T. Johnstone, R. Banse, A. Etter, T. Wehrle, and
K. Scherer, “Psychophysiological responses to appraisal dimensions in

11

a computer game,” Cognition and emotion, vol. 18, no. 5, pp. 663–688,
2004.

[35] C. Bassano, G. Ballestin, E. Ceccaldi, F. I. Larradet, M. Mancini,
E. Volta, and R. Niewiadomski, “A vr game-based system for multimodal
emotion data collection,” in Proceedings of the 12th ACM SIGGRAPH
Conference on Motion, Interaction and Games, 2019, pp. 1–3.

[36] S. Mascarenhas, M. Guimarães, R. Prada, P. A. Santos, J. Dias, and
A. Paiva, “Fatima toolkit: Toward an accessible tool for the development
of socio-emotional agents,” ACM Transactions on Interactive Intelligent
Systems (TiiS), vol. 12, no. 1, pp. 1–30, 2022.

[37] S. C. Marsella and J. Gratch, “Ema: A process model of appraisal
dynamics,” Cognitive Systems Research, vol. 10, no. 1, pp. 70–90, 2009.

[38] S. G. Ansari, I. Prasetya, M. Dastani, F. Dignum, and G. Keller, “An
appraisal transition system for event-driven emotions in agent-based
player experience testing,” in International Workshop on Engineering
Multi-Agent Systems. Springer, 2021, pp. 156–174.

[39] M. Shvo, J. Buhmann, and M. Kapadia, “An interdependent model
of personality, motivation, emotion, and mood for intelligent virtual
agents,” in Proceedings of the 19th ACM international conference on
intelligent virtual agents, 2019, pp. 65–72.

[40] A. S. Rao and M. P. Georgeff, “Decision procedures for bdi logics,”
1998.

[41] I. Prasetya, M. Dastani, R. Prada, T. E. Vos, F. Dignum, and F. Kifetew,
“Aplib: Tactical agents for testing computer games,” in International
Workshop on Engineering Multi-Agent Systems. Springer, 2020, pp.
21–41.

[42] A. Yacoub, M. E. A. Hamri, and C. Frydman, “Dev-promela: modeling,
verification, and validation of a video game by combining model-
checking and simulation,” Simulation, vol. 96, no. 11, pp. 881–910,
2020.

[43] R. Rezin, I. Afanasyev, M. Mazzara, and V. Rivera, “Model checking
in multiplayer games development,” in 2018 IEEE 32nd International
Conference on Advanced Information Networking and Applications
(AINA). IEEE, 2018, pp. 826–833.

[44] O. Tekik, E. Surer, and A. B. Can, “Verifying maze-like game levels
with model checker spin,” IEEE Access, vol. 10, pp. 66 492–66 510,
2022.

[45] D. D. Price and J. J. Barrell, “Some general laws of human emotion: In-
terrelationships between intensities of desire, expectation, and emotional
feeling,” Journal of personality, vol. 52, no. 4, pp. 389–409, 1984.

[46] J. Gow, P. Cairns, S. Colton, P. Miller, and R. Baumgarten, “Capturing
player experience with post-game commentaries,” in Proc. 3rd Int. Conf.
on Computer Games, Multimedia & Allied Technologies, 2010.

[47] D. Callele, E. Neufeld, and K. Schneider, “Emotional requirements in
video games,” in 14th IEEE International Requirements Engineering
Conference (RE’06). IEEE, 2006, pp. 299–302.

[48] G. Miguéis, J. Araujo, and A. Moreira, “Towards a requirements
language for modeling emotion in videogames,” in Proceedings of the
34th ACM/SIGAPP Symposium on Applied Computing, 2019, pp. 1878–
1880.

[49] T. Miller, S. Pedell, A. A. Lopez-Lorca, A. Mendoza, L. Sterling, and
A. Keirnan, “Emotion-led modelling for people-oriented requirements
engineering: the case study of emergency systems,” Journal of Systems
and Software, vol. 105, pp. 54–71, 2015.

12

